Thom isomorphisms in triangulated motivic categories

نویسندگان

چکیده

We show that a triangulated motivic category admits categorical Thom isomorphisms for vector bundles with an additional structure if and only the generalized cohomology theory represented by tensor unit object classes. also stable $\mathbb{A}^1$-derived does not admit oriented and, more generally, symplectic bundles. In order to do so we compute first homology sheaves of sphere spectrum class in coefficient ring $\mathbb{A}^1$-homology corresponding second Hopf map $\nu$ is nonzero which provides obstruction existence reasonable classes $\mathbb{A}^1$-cohomology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Motivic Thom Isomorphism

The existence of a good theory of Thom isomorphisms in some rational category of mixed Tate motives would permit a nice interpolation between ideas of Kontsevich on deformation quantization, and ideas of Connes and Kreimer on a Galois theory of renormalization, mediated by Deligne’s ideas on motivic Galois groups.

متن کامل

Motivic Exponential Integrals and a Motivic Thom-sebastiani Theorem

1.1. Let f and f ′ be germs of analytic functions on smooth complex analytic varieties X and X ′ and consider the function f ⊕ f ′ on X × X ′ given by f ⊕ f (x, x) = f(x) + f (x). The Thom-Sebastiani Theorem classically states that the monodromy of f ⊕ f ′ on the nearby cycles is isomorphic to the product of the monodromy of f and the monodromy of f ′ (in the original form of the Theorem [18] t...

متن کامل

Objects in Triangulated Categories

We introduce the Calabi-Yau (CY) objects in a Hom-finite Krull-Schmidt triangulated k-category, and notice that the structure of the minimal, consequently all the CY objects, can be described. The relation between indecomposable CY objects and Auslander-Reiten triangles is provided. Finally we classify all the CY modules of selfinjective Nakayama algebras, determining this way the self-injectiv...

متن کامل

Localizations in Triangulated Categories and Model Categories

Recall that for a triangulated category T , a Bousfield localization is an exact functor L : T → T which is coaugmented (there is a natural transformation Id → L; sometimes L is referred to as a pointed endofunctor) and idempotent (there is a natural isomorphism Lη = ηL : L → LL). The kernel ker(L) is the collection of objects X such that LX = 0. If T is closed under coproducts, it’s a localizi...

متن کامل

Heller triangulated categories

Let E be a Frobenius category, let E denote its stable category. The shift functor on E induces a first shift functor on the category of acyclic complexes with entries in E by pointwise application. Shifting a complex by 3 positions yields a second shift functor on this category. Passing to the quotient modulo split acyclic complexes, Heller remarked that these two shift functors become isomorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2021

ISSN: ['1472-2739', '1472-2747']

DOI: https://doi.org/10.2140/agt.2021.21.2085